easybill Import Tool CSV Import

This document describes the custom import format (csv file) to use when

importing orders from external systems that are not yet supported by easybill.

easybill GmbH, Diisselstr. 21, 41564 Kaarst

www.easybill.de

Document Version: 0.34 - Last Updated 12.05.14 14:55

1 Overview

1.1 Summary

Merchants can use the easybill custom csv interface to import their orders and invoicing
data from shop systems and marketplaces which are not directly supported by easybill.

This document describes the import format and the required fields.

2 Overview

2.1 Import via File Upload

We support uploading import files via our web interface. The merchant can simply
upload the csv file. This direct upload helps the merchant and/or developers to easily

test their files before setting up an import via FTP polling or API calls.

2.2 FTP Polling

For an automatic import the merchant can store FTP host and path information at
easybill. Our system will poll the FTP host regularly for new files in the custom csv

format and automatically process them.

2.3 REST API Import

We also offer a REST API which can be used to upload the csv-file via a simple HTTP(S)

POST request to our servers.

3 File Format CSV

The custom csv format allows merchants to import data into the easybill system when

they are using a system which is not directly supported by us.

3.1 General format

We expect the files encoded in UTF-8. Although it’s not advised the merchant can change
the encoding of the file in their import tool settings to ISO-8859-1 (LATIN/1). If the
merchant is free to choose between encodings we strongly advise to use UTF-8.

«n

The fields are separated via semi-colons: “;”. The merchant can also change the default

“wn «.n

settings to use other delimiters like comma “,” or colon “;” or tab-space.

Quotes (“”) are used as text separator. Line breaks should be either in windows (“\r\n”)
or Linux-style (“\n”). Quotes in text-fields must be escaped (i.e. replaced by a double-

quote: the term Toy “Plastic Duck” text becomes Toy “’Plastic Duck™”).

The csv file must contain the header names of each column. This helps us to extend the
format (e.g. new fields which should be imported) without breaking backwards-
compatibility. Our system will use the first row (headers) to identify which columns
need to be parsed. We don'’t rely on the order of the fields therefore the import file does

not need to have the columns in a specific order.

3.2 Field Types

The fields are defined as follows:

Type Description Sample

String Any text including line-breaks if enclosed A SAMPLE TEXT

with text delimiter (“)

Decimal Decimal values in the format XXX.YY. 100.00
Precision of 16,5. That means values up 9999999999.99999
t0 9,999,999,999.9999 (9 billions)

Integer Plain numbers without precision 1
Date Date format, YYYY-MM-DD 2012-07-19
Datetime Time format according to ISO-8601 2012-07-19T19:29:20+02:00

(http://de.wikipedia.org/wiki/ISO_8601)

3.3 Order specific fields

The following list of fields contains order specific fields. If an order contains more than a
single product/item we’ll use the information in the first row for the order. Therefore in
subsequent rows this fields, except order_number, can be empty or filled, because they

are ignored.

Name (Header) Comment Required Format

order_number Merchants internal order number to YES String (1..255)
identify an order. Must be unique
because our system uses this identifier
to prevent multiple imports of the

same order.

order_number_2 Secondary order number. Can beused NO String (0..255)
to store another external order
number to this order. In most cases it

is not needed.

email Email address of customer. Although NO, but String (0..255)
this field is optional we suggest touse ~ recomme
it because we use the email address to nded
send invoices to the customer

automatically

name Name of the customer. If you cannot see String (1..255)
split the name into first- and lastname = comment
because the shop system does not
store this separately. Mandatory if not

last-and firstname given.

firstname Firstname of the buyer. Not needed if see String (1..255)
“name” field is set. comment

lastname Lastname of the buyer. Not needed if see String (1..255)
“name” field is set. comment

address_1, Contains the street number and see String (1..255)

address_2, additional information that should be comment

address_3 printed on the invoice. Street should

always be at the last entry. Mandatory

if no street is given.

street

zipcode
city

state

country

phone_number

fax_number

shipping_name

shipping_firstname

shipping_lastname

shipping_address_1
shipping_address_2
shipping_address_3

shipping_street

shipping_zipcode

shipping_city

If not additional address information
is used you can use “street” to import
the street and housenumber.
Internally we concatenate the street
with the additional address

information (see above)

Zipcode (Postal Code) of the buyer
City

State (e.g. “Bundesland” in Germany)
of the buyer

Two letter ISO-Country Code (e.g. DE

for Germany) of the buyer!

Buyers phone number. This may be
needed for creating delivery orders

(e.g. Hermes, DHL)

Buyers fax number. Most often not

needed.

In case of separate shipping address:
use this field for the recipient (see

name field)

In case of separate shipping address:

see firstname

In case of separate shipping address:

see lastname field

In case of separate shipping address:

see address_1 - address_3 field

In case of separate shipping address:

see street field.

In case of separate shipping address:

see zipcode

In case of separate shipping address:

see city

see String (1...255)

comment

YES String (1..255)
YES String(1..255)
NO String (0..255)
YES String (2)

NO String (0..255)
NO String (0..255)
NO String (0..255)
NO String (0..255)
NO String (0..255)
NO String (0..255)
NO String (0..255)
NO String (0..255)
NO String(0..255)

11S0_3166-1_alpha-2, http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

shipping_state

shipping_country

customer_username

customer_number

currency

order_shipping_price

purchase_date

shipping_date

shipping_tracking

shipping_type

payment_date

In case of separate shipping address:

see state field

In case of separate shipping address:

see country field

If buyer has an external username (e.g.

eBay nickname) at the shop system, it
can be imported and printed on the

invoices.

If user already has an
customer_number at the shop system
this number can be imported and

printed on the invoice.

Currency of the order. Three-letter

currency code (e.g. EUR, GBP, USD)

Gross shipping costs

If the order has general shipping costs
(e.g. independ of ordered products)
this shipping costs needs to be

imported here.

Date/Time when the order was

purchased by the buyer.

Date/Time when the order was

shipped to the customer.

Tracking number of shipping

Type of shipping, e.g. DHL, Hermes.
Can be any custom string. Merchants
can use this information in a
placeholder to print this information

on the documents.

Date/Time when the order was paid

NO

NO

NO

YES

NO

NO, but
recomme

nded

NO

NO

NO

NO, but
recomme

nded

String (0..255)

String (2)

String (0..255)

String (0..255)

String (0..255)

Decimal (16,5)

Date or

Datetime

Date or
Datetime, or empty if

not yet shipped.
String(0..255)

String(0..255)

Date or
Datetime,

or empty if not paid.

payment_type

payment_reference

invoice_number

store_id

vat_id

tax_type

comments

Identifier for payment type used. Can
be printed on the invoice. No parsing
is done here, these will be transferred

1:1 onto the document.

A external payment reference which
you may want to be printed on the
invoice using the placeholder

{{payment_reference}}

If the system already generated an
invoice number it can be imported to

as a reference.

Identifier for the store (e.g. for
multistore solutions). Can be used to
modify document text and control

document template.
VAT-ID of the customer

Use this field to override the automatic
detection of the tax type which should
apply to the invoice. Can be empty or

one of the following:

* intra-community-trade

* export

Comments made by the buyer (e.g.

specific delivery instructions etc).

No

No

No

No

String (0..255)

Text

String (0..255)

String(0..255)

String(0...255)

String(0...255)

Textfield

3.4 Item specific fields

Each row must include item specific information. If an order contains two different

items, there must be two rows for this order. The order_number is used to identify order

items that belong to a single order.

Furthermore the rows must be consecutive, for example:

Correct:

order-1;john doe;

order-1;john doe;

..;first-item;....

...;second-item;....

order-2;peter pan;...;first-item;....

Incorrect:
order-1;john doe;...;first-item;....
order-2;peter pan;...;first-item;....

order-1;john doe;...;second-item:;....

The order specific information (see 3.3) can be repeated or empty for the subsequent
rows and will be ignored by our system. Therefore only the first row of order specific

information will be used for the import.

Name (Header) Comment Required Format

item_number Internal item order number used to NO String (0..255)

identify an item.

item_number_2 Secondary item order number for NO String (0..255)
internal purposes (e.g. can be printed

on the invoice)

sku SKU (stock keeping unit) for the NO, but String (0..255)
ordered product. If defined in the recomme
external system this should be stored nded
in the csv file because we use the SKU
for certain features (e.g. automatic
VAT calculations based on product)

etc.

title Product description that will be YES String (1..255)

printed on the invoice

title_2 Optional additional description NO String (0..255)

quantity How many products of this kind were ~ YES Integer
ordered

item_price Gross item price for a single unit (YES Decimal
quantity 1).

item_shipping_price Gross shipping costs for this item NO Decimal

vat_percent Percentage of the VAT rate which NO, but Decimal
applies to this product, e.g. 19.00 recomme

(= 19%). If no vat_percent is given we nded

vat_rate

item_type

item_weight

variant_yourKey

try to calculate the vat percentage by
the settings defined by the merchant
(e.g. default 19%) and probably
looking up SKU specific settings, or use

the vat_rate field if it is set.

Alternatively to vat_percent the NO
vat_rate description can be given. EU-

wide we support these types of

vat_rates:

default (e.g. Germany 19%)

discount (e.g. Germany 7%)

You can specify an alternative type for ~ NO
this item (e.g. if you're sending

discounts along with the item or

adding additional payment costs like

Cash on Delivery / Nachnahme)

Weight of the item. Can be used in the ~ NO
resulting document as template

variable {{item_weight}}

You can specify as many additional
variant information about the ordered

item as you need.

These information are not used by our
system but you can access and use this
information using the placeholder

variables.

Example: If you specify variant_color
you can use the placeholder
{{item_variant.color}} to build a

proper product title on your invoice.

String (0..255)

Valid contents:
‘product’ (default)
'discount’

‘virtual’

Examples:

variant_color
variant_size

variant_model

Please note that the
second part of the
variant_yourKey name
can only consist of
letters, dash (-),
underscore (_) and

numbers.

3.5 Comments

You can add comment lines to the generated CSV file for any purposes. We ignore any
lines starting with #!.If you are developer of an external module or shopping system

you should at least add the following comment to identify the exporting system:
#! exported-by: YOUR-SYSTEM-NAME

This helps us identifying problems with CSV files you've created. We also show the
merchant YOUR-SYSTEM-NAME in our frontend. This helps the merchant to identify
imports made by your shopping system (e.g. in case the merchant is using the Custom

CSV import from multiple systems).

4 FTP Polling

4.1 Settings

Our system can periodically query the server for the latest created orders. At
import.easybill.de the merchant can setup his ftp account where we can download the

orders as a CSV file.

Custom CSV/Import

FTP-Zugangsdaten

Shopify FTP-Host

Yatego ftp.samplehost.com
FTP-Verzeichnis

/export

FTP Benutzername

easybill-ftp
FTP Password

I AR R NN]
HTTP Ping (optional)

http://www.samplehost.com/create_csv_file.php

Alle 10 Minuten A 4

Optionally the merchant can specify an url which we call periodically to initiate the

creation of the csv file and try to to fetch it afterwards.

5 REST API

5.1 Overview

We also offer a simple REST API which can be used to upload the CSV file to our servers
and initiate the import process. The API is available under

https://import.easybill.de/api/v1

5.2 Authentication

When making HTTP calls to our REST API we check the following HTTP headers to

authenticate the user:

Name Description
X-EASYBILL-USER-ID This is the User ID of the easybill account.
X-EASYBILL-AUTH-KEY This is the Authentification key which is

also used for accessing the SOAP API. It
can be found at easybill.de under “Meine
Firma” / “Einstellungen” / “Soap-

Schnittstelle”.

5.3 Available Methods

5.3.1 Show an imported order

GET /api/vl/order/:order_number.json (or api/vl/order/:order_number.xml)

This method returns all information about an imported order in XML or JSON format.

You need to specify the order number of the order you want to fetch. Example call:
https://import.easybill.de/api/v1/order/123-1222-1222

5.3.2 Upload orders as Custom CSV file

POST /api/v1/orders/upload

Use this method call to upload a CSV file (as specified in the format accord. Section 3 of
this documentation). The file should be encoded and uploaded in UTF-8 encoding as a

raw POST file.

By default, the orders in the uploaded CSV file are imported but we don’t automatically
create invoices. If you want us to create invoices for the imported orders right after

uploading the file, please add the query parameter ?auto_export=true to the API call.

